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The water-storage and transmission characteristics of the bedrock and the regolith and the
hydraulic connection between the bedrock and the regolith determine the water-supply potential of the
aquifers in the metamorphic and igneous rocks in the two provinces (fig. 2). Wells that penetrate
consolidated rocks in areas mantled by thick, saturated regolith generally have higher sustained yields
than wells where regolith is thin or absent. Porosity of the regolith is about 35 to 55 percent near land
surface (Stewart, 1962) but decreases with depth as the degree of weathering decreases. Porosity of the
underlying bedrock is only 0.01 to 2 percent (Heath, 1984). Because of the relatively large porosity of
the regolith, recharge is stored primarily in the regolith and is released slowly to underlying bedrock
fractures. The transition zone between the saprolite and the unweathered bedrock is often more
permeable than the saprolite. If the transition zone is sufficiently thick, significant amounts of ground
water can flow laterally in this zone. Laboratory analyses of samples of saprolite in Maryland and
Georgia indicate a wide range of hydraulic conductivity—0.0013 to 15 ft/d (Nutter and Otton, 1969).
The abundance of connected fractures in the bedrock directly affects the yield of wells in these rocks.
Because fractures act as conduits for ground-water flow, well yields are greatest where wells intersect
fractures that are large, numerous, or both. Because the number and size of fractures decrease with
depth in the Blue Ridge and Piedmont rocks, few wells in these two provinces are drilled more than
500 feet deep.

Several basins and valleys that are filled with sedimentary rocks lie within the expanse of
metamorphic and igneous rocks of the Blue Ridge and Piedmont Physiographic Provinces and
constitute less than 10 percent of the study area. Carbonate rocks underlie the Conestoga Valley section
of the Piedmont in southeastern Pennsylvania, the Frederick Valley in central Maryland, and small
valleys and coves in the Blue Ridge Physiographic Province in Tennessee and in the Piedmont in
Alabama (fig. 1). Although poorly represented in the study data base, the limestone, dolomite, and
marble in these valleys produce as much as 1,800 gal/min to large-diameter municipal and industrial
wells from conduits dissolved in the dense rock.

capacity or well yield. Knopman (1990) described factors related to the water-yielding potential of
rocks in the APRASA area of Pennsylvania and suggested that there was a statistical basis for grouping
geologic units into hydrogeologic units, or terranes, by rock type. Hollyday and Hileman (1996)
classified and mapped hydrogeologic terranes in the Valley and Ridge Physiographic Province using
statistical analysis of specific-capacity data. Daniel (1989) described a statistical analysis relating well
yield to construction and location of wells in the Blue Ridge and Piedmont Physiographic Provinces of
North Carolina. Daniel presented well data classified by geologic belts, hydrogeologic units composed
of similar rock types, topographic setting, and other parameters. Daniel and Payne (1990) classified
rock types into 21 hydrogeologic units in the Blue Ridge and Piedmont Physiographic Provinces of
North Carolina on the basis of rock origin, composition, and texture. The units were ranked on the basis
of the average yield of wells in each unit.

The rock types in each physiographic province were ranked in order of median yield to
nondomestic wells and grouped into hydrogeologic-terrane classes according to selected ranges in
median yield. Two hydrogeologic terranes (gneiss-granite and schist-sandstone) were classified in the
Blue Ridge Physiographic Province, and three hydrogeologic terranes (phyllite-gabbro, gneiss-schist,
and shale-sandstone) in the Piedmont Physiographic Province. The names of the hydrogeologic terranes
correspond to the two rock types that compose the most area within the terrane. The classes of median
well yield for the Blue Ridge Physiographic Province were less than or equal to 24 gal/min (gneiss-
granite) and greater than 24 gal/min (schist-sandstone). The classes of median well yield for the
Piedmont Physiographic Province were less than or equal to 12 gal/min (phyllite-gabbro), greater than
12 to 40 gal/min (gneiss-schist), and greater than 40 gal/min (shale-sandstone). An analysis of variance
performed at a probability (alpha level) of 0.05 indicated that the median yield for any one
hydrogeologic terrane differs significantly from the median yield of every other terrane within the same
physiographic province. The hydrogeologic terranes may be concluded to be significantly different in
their water-yielding properties as indicated by the yield of wells.

WELL YIELD, IN GALLONS PER MINUTE
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Figure 3. Relation between average well yield and average total depth of well for 50-foot
depth intervals in seven areas of the Piedmont Physiographic Province.
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wells used in the statistical analysis were 8,559 nondomestic wells with values of yield and
3,864 nondomestic wells with values of specific capacity.

Values of yield were retrieved from each well record, grouped by province and rock type, and
analyzed to derive statistical characteristics of yield for each of 38 combinations of province and rock
type. For each physiographic province, the rock types were then ranked in order of increasing median
yield and grouped into two or more hydrogeologic terranes according to selected ranges in median
yield. The interquartile ranges in yields to nondomestic wells in the two hydrogeologic terranes in the
Blue Ridge Physiographic Province are 8 to 32 gal/min, gneiss-granite, and 10 to 61 gal/min, schist-
sandstone. The interquartile ranges in the three hydrogeologic terranes of the Piedmont Physiographic
Province are 5 to 20 gal/min, phyllite-gabbro; 10 to 60 gal/min, gneiss-schist, and 35 to 220 gal/min,
shale-sandstone. An analysis of variance indicated that the hydrogeologic terranes are significantly
different in their water-yielding properties. In the shale-sandstone hydrogeologic terrane of the
Piedmont Physiographic Province, siltstone in the Mesozoic basins of New Jersey has wells with the
largest median yield of any rock type in the study area. In the schist-sandstone hydrogeologic terrane of
the Blue Ridge Physiographic Province, limestone has nondomestic wells with the largest median yield
of any rock type in this province. An evaluation of the classification of hydrogeologic terranes based on
yield using specific-capacity data indicated that the ranking of median values of specific capacity is the
same as for well yield. The classification of hydrogeologic terranes based on well yield has significant
differences among terranes and is a useful hydrologic subdivision of the Blue Ridge and Piedmont
Physiographic Provinces.

Hydrogeologic terranes were mapped by assigning rock types in the coverage of rock types to the
appropriate hydrogeologic terrane that was based on well yield. The shale-sandstone hydrogeologic
terrane in the Piedmont Physiographic Province has the largest median well yields and is predominantly
shale, sandstone, and siltstone in the Mesozoic basins in Maryland, New Jersey, Pennsylvania, and
Virginia.

Siliciclastic and volcanic rocks fill a series of 15 elongated, down-faulted basins that lie within the Although the median yields of the hydrogeologic terranes are significantly different, the data sets 0 B REFERENCES CITED
Piedmont Physiographic Province in a discontinuous belt extending almost 600 mi from New York into  {0F the terranes overlap to such a degree (fig. 4) that the variation in yield within a terrane may be more - E
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. . - . . gneiss-granite hydrogeologic terrane by as much as 80 percent (fig. 4), making questionable the value arolina ogical Survey, 1 sheet, scale 1:500,000.
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interstitial pores. The three Mesozoic basins (fig. 1) near the northeastern end of the discontinuous belt ~ divided into three hydrogeologic terranes with significantly different median yields to nondomestic - Cleaves, E.T., Edwards, Jonathan, Jr., and Glaser, J.D., comps., 1968, Geologic map of Maryland: Maryland
of 15 Mesozoic basins contain fractured shale, siltstone, and sandstone which yield as much as  Wells; however, the overlap in interquartile ranges among adjacent classes would be of the order of 60 Geological Survey map, 1 sheet, scale 1:250,000.
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south along the belt of 15 basins; this decrease is accompanied by a decrease from north to south in
overall grain size of the sediments that were deposited in the basins. Within the Mesozoic basins, water-
yielding openings generally decrease in number and width of opening as depth below land surface
increases.

Because fractures tend to decrease in number and size with depth, investigators have assumed that
well yields decrease with depth. Data from a combination of domestic and nondomestic wells were
sufficient in seven local areas in the Piedmont Physiographic Province to investigate the relation
between well yield and total depth of well as part of the APRASA study. The method was to compute
the average yield of wells grouped according to their total depth into classes covering 50-ft-depth

Perhaps a more realistic estimate of well yields than the median value and an indication of their
variation within hydrogeologic terranes is the interquartile range. The interquartile ranges in yields to
nondomestic wells in the two hydrogeologic terranes in the Blue Ridge are 8 to 32 gal/min, gneiss-
granite, and 10 to 61 gal/min, schist-sandstone. The interquartile ranges in the three hydrogeologic
terranes of the Piedmont Physiographic Province are 5 to 20 gal/min, phyllite-gabbro; 10 to 60 gal/min,
gneiss-schist; and 35 to 220 gal/min, shale-sandstone.

Statistical characteristics of the yield values of nondomestic wells in selected rock types in each of
the hydrogeologic terranes are given in table 1. In the Blue Ridge Physiographic Province, limestone in
the schist-sandstone hydrogeologic terrane has nondomestic wells with the largest median (50th
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EXPLANATION

Description of hydrogeologic terranes—The sequence of units
is not intended to imply stratigraphic position. See State
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Daniel, C.C., II1, and Payne, R.A., 1990, Hydrogeologic unit map of the Piedmont and Blue Ridge Provinces
of North Carolina: U.S. Geological Survey Water-Resources Investigations Report 90-4035, 1 sheet,
scale 1:500,000.

Daniel, C.C., III, Smith, D.G., and Eimers, J.L., 1997, Hydrogeology and simulation of ground-water flow in
the thick regolith-fractured crystalline rock aquifer system of Indian Creek Basin, North Carolina: U.S.
Geological Survey Water-Supply Paper 2341-C, 137 p.

Hardeman, W.D., 1966, Geologic map of Tennessee: Tennessee Division of Geology map, 4 sheets,
scale 1:250,000.

Heath, R.C., 1984, Ground-water regions of the United States: U.S. Geological Survey Water-Supply Paper

intervals and to plot the average yield against the average depth of the interval (fig. 3). The curves for : ; 2 : : . . : 5 4 : o . 2242, 78 p.
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hand, the curves for counties around and near Winston-Salem, Statesville, and Charlotte, N.C., show a
substantial increase in average yield with increase in average depth to depths of 400 or 600 ft, followed
by a decrease in average yield with increase in average depth. The curve for counties around and near
Atlanta, Ga., shows an abrupt increase in average yield with average depths between 300 and 400 ft,
followed by a decrease in average yield with increase in average depth. Four out of seven areas may be
concluded to have average well yields that are substantially greater for wells completed between 400
and 600 ft below land surface compared to wells in the same areas completed between 100 and 200 ft
below land surface.

SELECTION AND ANALYSIS OF RECORDS AND VARIABLES

Hydrogeologic terranes were classified separately within the two physiographic provinces by
relating rock type to the yield of nondomestic wells. The hydrogeologic terranes were then mapped by
relating the rock type within each hydrogeologic terrane within each province back to the mapped
geologic units with the corresponding rock type. The yields of nondomestic wells were obtained from
the GWSI database of the USGS in each State. The analysis of maps and well records in order to
classify and map hydrogeologic terranes involved several choices and methods. These included
appropriate map scales, map projections, identification of the principal rock type in each geologic unit,
and the use of all wells, or simply nondomestic wells, in statistical analysis. The selected choices and
methods are described below.

median yields of any two rock types in that province. In the same hydrogeologic terrane, siltstone has
nondomestic wells with the largest median yield of any rock type in the study area. Essentially all wells
in siltstone are in the siliciclastic rocks in the Mesozoic basins in New Jersey.

If the quantity of data were adequate for analysis, specific capacity, in addition to well yield, could
be used to classify and map hydrogeologic terranes. Unfortunately, the distribution of specific-capacity
measurements among rock types and the small number of measurements for wells in the Blue Ridge
Physiographic Province prevented a complete analysis by rock type of these data in this province.
Specific-capacity data were sufficient, however, to at least evaluate the classification of hydrogeologic
terranes based on well yield. To perform this evaluation, the authors assigned specific-capacity values
grouped by rock types to the same rock types and hydrogeologic terranes as used in the analysis of well
yields (fig. 5). The ranking of median values of specific capacity is the same as for well yield.
Generally, the grouping of rock types into terranes using median values of specific capacity would be
similar to groupings using values of well yield. An analysis of variance performed at a probability
(alpha level) of 0.05 indicated that the median specific-capacity value for any one hydrogeologic
terrane differs significantly from the median specific capacity for every other terrane within the same
physiographic province. The hydrogeologic terranes may be concluded to be significantly different in
their water-yielding properties as indicated by the specific capacity of wells.

Statistical characteristics of the specific-capacity values of nondomestic wells in selected rock
types in each of the hydrogeologic terranes of the Piedmont Physiographic Province are given in
table 2. A comparison of the value of the median specific capacity for a selected rock type with the
median values for other rock types in the same hydrogeologic terrane reveals how well the selected
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Blue Ridge Physiographic Province

Gneiss-granite hydrogeologic terrane—Median, nondomestic
well yield 0 to 24 gal/min. Includes geologic units that are
predominantly basalt, gneiss, granite, phyllite, thyolite,
and shale

Schist-sandstone hydrogeologic terrane—Median, nondomestic
well yield more than 24 gal/min. Includes geologic units that
are predominantly amphibolite, dolomite, limestone, quartzite,
sandstone, and schist

Piedmont Physiographic Province

Phyllite-gabbro hydrogeologic terrane—Median, nondomestic well
yield O to 12 gal/min. Includes geologic units that are predominantly
gabbro, greenstone, phyllite, and serpentine

[ ]

Gneiss-schist hydrogeologic terrane—Median, nondomestic well yield
more than 12, to 40 gal/min. Includes geologic units that are pre-
dominantly argillite, conglomerate, diabase, diorite, gneiss, granite,
gravel, limestone, metavolcanics, mudstone, quartzite, sand, schist,
tuff, and volcanics

Hollyday, E.F., and Hileman, G.E., 1996, Hydrogeologic terranes and potential yield of water to wells in the
Valley and Ridge Physiographic Province in the Eastern and Southeastern United States: U.S.
Geological Survey Professional Paper 1422-C, 30 p.

Hollyday, E.E, Hileman, G.E., and Duke, J.E., 1997, The Elkton aquifer or western toe aquifer of the Blue
Ridge Mountains—a regional perspective, in Younos, Tamim, Burbey, T.J., Kastning, E.H., and Poff,
J.A., eds., Karst-Water Environment Symposium, Roanoke, Va., 1997, Proceedings: Blacksburg, Va.,
Virginia Water Resources Research Center, Virginia Polytechnic Institute and State University, p. 71-79.

Knopman, D.S., 1990, Factors related to the water-yielding potential of rocks in the Piedmont and Valley
and Ridge Provinces of Pennsylvania: U.S. Geological Survey Water-Resources Investigations Report
90-4174, 52 p.

Lawton, D.E., and others, 1976, Geologic map of Georgia: Georgia Geological Survey map, 1 sheet,
scale 1:500,000.

Lewis, J.V,, and Kummel, HB., 1912, Geologic map of New Jersey: New Jersey Department of
Conservation and Economic Development Atlas Sheet 40, 1 sheet, scale 1:250,000. Revised by
Johnson, M.E., 1950.

Mesko, T.O., 1993, Delineation of hydrogeologic terranes in the Piedmont and Blue Ridge Physiographic
Provinces—Southeastern and Mid-Atlantic United States [abs.]: American Association of Petroleum
Geologists Bulletin, v. 77, no. 8, p. 1471.

Nutter, L.J., and Otton, E.G., 1969, Ground-water occurrence in the Maryland Piedmont: Maryland
Geological Survey Report of Investigations 10, 56 p.

Osborne, W.E., Szabo, M.W., Copeland, C.W., Jr., and Neathery, T.L., 1989, Geologic map of Alabama:
Geological Survey of Alabama Special Map 221, 1 sheet, scale 1:500,000.

Overstreet, W.C., and Bell, Henry, III, 1965, Geologic map of the crystalline rocks of South Carolina: U.S.
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State geologic maps exist for the entire study area (fig. 1). The State maps, at scales of 1:500,000  yjihin their respective hydrogeologic terranes: tuff and granite in the gneiss-schist hydrogeologic : SO i R o Swain, L.A., Hollyday, EF, Daniel, C.C., III, and Zapecza, O.S., 1991, Plan of study for the regional

and 1:250,000, were selected over maps of smaller or larger scale, or more recent vintage, because they
depicted rock type in addition to rock age at a convenient scale. Excepting Delaware, film-positive
images of the geologic-contact separates of each of the State maps were scanned and the resulting
vector files were converted to line spatial data coverages, which were extensively edited to remove
extraneous information and to match coverages for adjacent States (Mesko, 1993). State boundaries
were added to each State coverage using a single APRASA-wide scale. All coverages were reprojected
from their original coordinate systems into the Albers coordinate system and joined to make a single
geologic-unit coverage of the APRASA area. Maps at a scale of 1:24,000 (less than statewide) were
used to cover the small area of Delaware within the study area.

A polygon coverage, which represents the area covered by each geologic unit, was created from
the geologic-unit line coverage. Each polygon was labeled with the geologic-unit name, map symbol,
rock type, and additional attributes. The rock type was determined from the explanation on the
published geologic maps. Brief explanations were supplemented with descriptions of geologic units in
the lexicons of geologic names. A polygon coverage of rock types was created by merging geologic-

terrane have median values that would fit more appropriately in the phyllite-gabbro terrane; limestone
and conglomerate in the gneiss-schist hydrogeologic terrane have median values that would fit more
appropriately in the shale-sandstone hydrogeologic terrane. Tuff can be dismissed because of the small
sample size. The remaining misfits suggest the possibility of a different classification based on specific
capacity alone. However, the classification of hydrogeologic terranes based on well yield has
significant differences among terranes and is a useful hydrologic subdivision of the Blue Ridge and
Piedmont Physiographic Provinces.

HYDROGEOLOGIC TERRANE MAP

Hydrogeologic terranes were mapped by assigning rock types in the coverage of rock types to the
appropriate hydrogeologic terrane that was based on well yield. This hydrogeologic terrane coverage
was then combined with a base map having the same coordinate system to produce the hydrogeologic
terrane map (fig. 6). The hydrogeologic terranes coincide with the outcrop areas of the geologic units
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yield more than 40 gal/min. Includes geologic units that are pre-
dominantly basalt, dolomite, graywacke, marble, sandstone, shale,
and siltstone

Blue Ridge and Piedmont Physiographic Provinces

Hydrogeologic terrane not defined—Includes geologic units whose
rock type had fewer than 10 samples of well yield or whose litho-
logic composition was too varied to assign a rock type
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Provinces of the Eastern and Southeastern United States, with a description of study area geology and
hydrogeology: U.S. Geological Survey Water-Resources Investigations Report 91-4066, 44 p.
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Series, no. 4, scale 1:24,000.

CONVERSION FACTORS AND VERTICAL DATUM

unit polygons that were labeled with the same rock type. This simplified coverage was then used to 5 . e . L : Multiply By To obtain

identify the rock type associated with each well in the GWSI database. - th? comssponding wekitypes: Fie tagnen hidieptaienie terrajne Rerden— contal_ns I geterl Figure 6. Location of the hydrogeologic terranes of the Blue Ridge and b
categories of rocks. The more abundan.tly populated category contains rock types for which there were Piedmont Physiographic Provinces in the Eastern United States. inch (in.) 25.4 millimeter
fewer than 10 measurements of well yield, and the rock type could not be assigned to a hydrogeologic y foot (ft) 0.3048 meter

WELL RECORDS terrane. The less abundantly populated category contains rock types for which no single rock-type term 39 [ mile () 1.609 lilGmster
. . . . . . could be applied because of the varied lithologic composition of the original geologic unit. square mile (mi%) 2.590 square kilometer
The complexity of the geology of the Blue Ridge and Piedmont Physiographic Provinces causes gallin per minite (g linn) 0.06308 Jitier por seconil
large variation in the water-yielding properties of the rocks as compared to the water-yielding properties The schist-sandstone hydrogeologic terrane in the Blue Ridge Physiographic Province has the St e ) 0305 St i dny

of sediments in the structurally and lithologically simpler Coastal Plain Physiographic Province. The
range in yields of water to wells completed in any particular rock type can span several orders of
magnitude and overlap the ranges of well yields in other rock types. Any analysis of this variation
requires a large amount of well data to describe differences in the yield of water to wells within each
rock type and to test for significant differences in yield among rock types.

largest median well yields in that province and is predominantly schist, sandstone, and quartzite at the
southwestern end and along the northwestern edge of the province. The shale-sandstone hydrogeologic
terrane in the Piedmont Physiographic Province has the largest median well yields and is predominantly
shale, sandstone, and siltstone in the three northeasternmost Mesozoic basins in the study area in
Maryland, New Jersey, Pennsylvania, and Virginia.

Base from U.S. Geological Survey
DLG data, 1:100,000
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